Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Programming (Structures — Part 1 Page 1 © Dr. Mark J. Llewellyn

Structures In C

Structures — sometimes referred to as aggregates — are
collections of related variables under one name.

So far, we’ve only looked at one structure in C, the array.
Arrays have two important properties that distinguish them
from most structures. First, all array elements are of the same
type. Second, the elements of the array are stored in contiguous
locations in memory which allows us to specify a position in
the structure using an index value (recall pointer arithmetic).

The properties of a structure are quite different from that of an
array. The elements (called members in C) are not required to
have the same type, and the members of a structure each have a
name, so to select a member of a structure its name is used not
Its position.

-

COP 3223: C Programming (Structures — Part 1) Page2 © Dr. Mark J. Llewellyn g’)n

Structures In C

Many programming languages have facilities for user defined
structures. It is common in many languages, other than C, to
refer to these structures as records, and the members of the
records are called fields or attributes.

It IS common to used structures to define records that are stored
In files.

Pointers and structures are used to facilitate the formation of
more complex data structures such as linked lists, queues,
stacks, and trees. All of which are extensively used data
structures in many computer science applications.

Structures are considered to be derived data types, meaning that
they are constructed using objects of other types.

’

COP 3223: C Programming (Structures —Part 1) Page3 © Dr. Mark J. Llewellyn g");

Structures In C

In C you declare a struct (essentially a type) and then you
can create variables of the struct type.

The general syntax of a st ruct declaration is:

struct <struct name> ({ Note: C convention is to
. place structure
<typel> <variablel>; definitions at the top of
your source file right
<type2> <variable2>; after any #define
directives.

<typeN> <variableN>;

}K Variables of the structure type can be declared by

placing a comma-separated list between the closing
brace of the structure definition and the semicolon that
ends the structure definition.

P
COP 3223: C Programming (Structures —Part 1) Page4 © Dr. Mark J. Llewellyn §j

Structures In C

As an example structure declaration, let’s create a structure that
would contain information about students at UCF. We want to
Include the student’s name, their GPA, and the number of credit

hours they have completed. We might declare the structure as
follows:

struct ucfStudent {
char name [MAXLENGTH] ;
double gpa;
int creditHoursCompleted;

}studentl, student?2;

This structure definition creates two variables named
studentl and student2 with the structure as shown.

#
COP 3223: C Programming (Structures —Part 1) Page5 © Dr. Mark J. Llewellyn @j

Structures In C

The two variables studentl and student?2 each have
three members (fields) named name, gpa, and
creditHoursCompleted.

The members of a structure are stored in memory in the

order in which they are declared. Assuming that
studentl Is located at address 2000 in the memory and

student?2 IS located at address 4000 in memory, these

structures in memory would be represented as shown In
the diagram on the following page:

Let's assume that MAXLENGTH is 5, doubles
require 8 bytes of memory and int requires 4 bytes
of memory

COP 3223: C Programming (Structures —Part 1) Page6 © Dr. Mark J. Llewellyn g");

address memory address memory
2000 B 4000 B
2001 4001
2002 =—name 4002 =—name
2003 4003
2004 4004
2005] 4005]
. gpa — gpa
2012 4012
2013 i 4013 i
2014 4014
= creditHoursCompleted = creditHoursCompleted
2015 4015
2016 4016
2017 4017
studentl student2
7
COP 3223: C Programming (Structures —Part 1) Page7 © Dr. Mark J. Llewellyn gjj

Structures In C

As with arrays, a structure variable can be initialized at the
time it is declared. The initializer values must appear In
the same order in which their corresponding members
were declared in the structure and are enclosed in braces as
they were with array initializers.

struct ucfStudent {

char name [MAXLENGTH] ;

double gpa;

int creditHoursCompleted;
}studentl = {“Debi”, 3.99, 110},
student2 = {“Suzie”, 3.25, 58};

#
COP 3223: C Programming (Structures —Part 1) Page8 © Dr. Mark J. LIewellyn @j

Structures In C

Structures may not be compared using the == or !=

operators, because structure members may not necessarily
be stored in contiguous bytes of memory. Sometimes
there are “holes” In a structure, because computers may
store specific data types only on certain memory
boundaries such as half word, word, or double word
boundaries.

For example, consider a computer with a 4-byte word and
the structure definition:

struct example { If samplel were stored beginning at address

char c: 1000 (a word boundary) and its first member
requires only 1 byte, the next word boundary
would be at address 1004, leaving a hole of 3
} samplel; bytes.

int n;

’

COP 3223: C Programming (Structures — Part 1) Page9 © Dr. Mark J. Llewellyn g");

Accessing Members Of Structures

The dot operator has the same precedence as the postfix ++ and
— operators, which means it takes precedence over nearly all C
operators (only () and [] are higher). C provides two operators
for accessing the members of a structure.

The structure member operator (.), more commonly called
the dot operator. And the structure pointer operator (->). The

structure pointer operator is used to access a structure member
via a pointer to the structure. We’ll use this operator later and
for now focus only on the dot operator.

To access a member of a structure use the following syntax:
nameOfTheStructure.nameOfTheMember

Example: studentl.gpa

COP 3223: C Programming (Structures —Part 1) Page 10 © Dr. Mark J. Llewellyn g’):

Accessing Members Of Structures

To illustrate some of the features of structures that we’ve seen
so far, let’s write a program that utilizes the ucfStudent

structure we created on page 8.

Notice the different way the structure members are assigned
values using initializers, values read from the keyboard and
direct assignment.

#
COP 3223: C Programming (Structures —Part 1) Page 1l © Dr. Mark J. Llewellyn @j

wzing structures - example 1.c

6 #define MAXLENGTH 1q

s

8 //stroucture defining & UCF studsnt

? =troct uvucfStudent {

14 char name [MAXT.ENGETH] - student's first nams

11 dooble gpar; Sstudent s gps

12 int creditHoursCompleted: S hours completed by the stuodsnt

13 } =tudentl = {"Deki™, 3.9%9, 110}:

14

15 int main()

16 {

i7 stroct ucfStudent =s=tudent?, =student3; . orestes twve mors students
18

19 printf ("Enter student name=e: ™) ;

28 scanf ("E=", &student?.name) ;

21 printf ("™} ;

22 student2 .gpa = 3I.56:; SS3ssign stud=sntf gos

23 student?.creditHoursCompleted = 8&; assign studentsf credit hours
24 printf ("Enter student name=e: ™) ;

25 scanf (":¥=", &student3I.name) ;

26 printf ("“nEnter gpa: "):

2% scanf (":E£f", &student3I.gpa) :

28 printf ("“nEnter =student credit hours completed: ™)

29 scanf (":Ed", &student3I.creditHoursCompleted) ;

38 printf("\n\o") ;

31 student3.gpa = studentl.gpa; SAassigne student? gpa same as studentl
32 student3.creditHoursComnpleted = student?.creditHoursCompleted + 10;
33

34 printf ("Student 1 Information’n™) :

35 printcf{("--————-————————(———— o™y

36 printf ("Hame: ='nEP4: %4.2fnHours Completed: 4o oo™,

COP 3223: C Programming (Structures —Part 1) Page 12 © Dr. Mark J. Llewellyn “

& CACourses\COP 3223 - C Programming\Spring 2000\COP 3223 Program ... === e

nter student name: Hristy -

nter student name: Alessandra
nter gpa: 3.56

nter student credit hours completed: 88

tudent 1 Information

ame: Debi
PA: 3.99
ours Completed: 118

tudent 2 Information

ame: Kri=sty
PAa: 3.56
ours Completed: 88

tudent 3 Information

ame: Alessandra
GPA: 3.99

Hours Completed: 278

Press any key to continue . . .

* __ o

COP 3223: C Programming (Structures —Part 1) Page 13 © Dr. Mark J. Llewellyn

Accessing Members Of Structures

Now let’s look at the other operator used to access a structure,
the structure pointer operator (->).

This operator works when a pointer to a structure has been
declared and we are working with the structure members

through the pointer to the structure.

As a running example, let’s declare a structure that represents a
normal playing card:

struct card {

char *face|[MAX];
char *suit [MAX];

by

#
COP 3223: C Programming (Structures — Part 1) Page 14 © Dr. Mark J. Llewellyn @j

Accessing Members Of Structures

Declaring a pointer to a card structure would be done as
follows:

struct card *cardPtr;

We can then access the members of the structure card using
the structure pointer operator as follows:

cardPtr->face = “Ace”;

cardPtr->suit = “Spades”;

Reading a value into a structure using a pointer is done in a
similar manner , such as:

scanft (“ss”, &cardPtr->face);

The following program illustrates the use of both the dot
operator and the pointer structure operator.

#
COP 3223: C Programming (Structures —Part 1) Page 15 © Dr. Mark J. Llewellyn @j

using structures - example 1.c [*] using structures - example 2.c

5 #define MAX 10

[

Y s=troct card {

8 char *face[MHMAX]:

o char *suit [MLX] :

18 ;

i1

12 int main ()

13 {

14 stroct card aCard: SAdefine 8 single card structurs

15 stroct card *cardPtr: SAdefinse 8 pointer to a card structure
16

17 cardPtr = &aCard; // assign addrsss of aCard to cardPtr

i8 printf ("Enter the card's value: n") ;:

19 scanf ("E=", &cardPtr->face) :

28 SAprintf("Es\n", aCard.face) s

21 printf("w“nEnter the card's suit: ") :

22 scanf ("E¥=", &cardPtr-»suit) :

23 printf (" n"nUsing the structure wvariakble alCard we hawve: ") ;
24 printf ("The card i=: %= of ET=''n", aCard.face, aCard.suit):
25 printcf (" nWnU=sing the pointer to the structure we have: \n") :
26 printf ("The card is: %= of Es'nwn'n", cardPcr->»>face, cardPtr—>suit) ;
27 Frmodi Fyving the card’'s wvalus

28 printf ("Enter a new card wvalus: ") :

29 gcanf (":=", &scardPtr->face) :

38 FAprintf {"Es\n", alard.faces) ;

31 printf("\nEnter a new card suit: o) :

32 gscanf ("Et=", EcardPtr->suit) :

33 printf("wnnU=sing the =structure wvariable aCard we have:n") :
34 printf("The card is: %=z of E=s'\n", aCard.face, aCard.suitc);
35 printf ("\n\WnlOsing the pointer to the structure we hawve:'\n"™) :
36 printfi"The card i=: %= of E="n". cardPtr->face. cardPtr-—->»suit):

COP 3223: C Programming (Structures —Part 1) Page 16 © Dr. Mark J. Llewellyn

-

BN ChCourses\COP 3223 - C Pregramming\Spring 20090\COP 3223 ..

0
g

nter the card’s value:
ce

Enter» the card's swit:
Spades

Using the structure variable aCard we have:
The card iz: Ace of Spades

Uzing the pointer» to the structure we have:
The card is: Ace of Spades

Enter a new card value:
Ten

Enter a new card suwit:
Clubs

Uzing the structure variable aCard we have:
The card is: Ten of Clubs

Using the pointer» to the structure we have:
The card iz: Ten of Clubs

Press any key to continue . . .

4| v

COP 3223: C Programming (Structures —Part 1) Page 17 © Dr. Mark J. Llewellyn

The keyword typedef

The keyword typedef provides a mechanism for creating

aliases for previously defined data types. Names for structure
types are often defined with typedef to create shorter type
names.

For example, the statement:
typedef struct card Card;

defines a new type name Card as an alias for the type struct
card.

C convention is to use a capital letter for the type defined in a
typedef statement.

#
COP 3223: C Programming (Structures —Part 1) Page 18 © Dr. Mark J. Llewellyn @j

he keyword typedef

It IS most common to use a typedef statement to define a type

with a structure where the structure name (structure tag) Is
missing.

For example, the card structure that we’ve been using would be
defined as follows:

typedef struct {
char *face[MAX];

char *suit [MAX];
} Card;

Notice that when using the typedef statement, that variables of
the structure type cannot be declared between the closing } and

the closing ;.
(p)
COP 3223: C Programming (Structures —Part 1) Page 19 © Dr. Mark J. Llewellyn g;

Using Structures With Functions

Structures can be passed to functions by passing individual
structure members, by passing an entire structure, or by passing
a pointer to a structure.

When structures or individual members of structures are passed
to a function, they are passed by value. Therefore, it is
Impossible for the called function to modify members of the
caller’s structure.

To pass a structure by reference you must pass the address of
the structure variable to the function (i.e., a pointer to the
structure). [In the following example, all the parameters passed
to functions are arrays so implicit pointers are being passed In
lines 77-79.]

Arrays of structures (like any array) are passed by reference.
#

COP 3223: C Programming (Structures — Part1) Page20 © Dr. Mark J. Llewellyn g’):

Using Structures With Functions

The final example In this set of notes continues with the card
structure, but introduces the typedef statement and uses

several functions to which arrays of structures are passed.

The program creates a deck of cards (an array of structures) and
then uses functions to fill the deck with valid cards, shuffle the
deck, and finally deal all the cards in the deck.

#
COP 3223: C Programming (Structures —Part 1) Page21 © Dr. Mark J. Llewellyn @j

card shuffling example.c

1 //Structures In & - Part 1 - Using structurses with functions

2 //Example deals a deck of cards stored as a structurs and uses functions
3} //to shuffle and deal the cards.

4 //April 14, 2009 Fritten by: Mark Llewvellyvn

5

b #include <stdio.h>

Y #include «<stdlib.h>

B #include <time.h>

? #define MAXFRCE 13
18 fFdefine MARXCRRDS 52

12 7/ card strouctnre definition
13 strunct card {

14 const char *face; // define pointer facs

15 const char *s=suit; // define pointer suit

16 }; // =nd card structure definition

17

18 typedef =trunct card Card; //s=t nev type name for struct card
17

28 void f£illDeck| Card * const wDeck, const char * wFace[], const char * wSuit[])
21 {

22 int i; // loop control

23

24 /4 loop through wDeck

25 for (i = 0; i « MAXCARDS: i++) {

26 wheck[i].face = wFace[i ¥ MAXFLCE]:

27 wheck[i].38uit = wiuit[i /F MAXFLCE]:

28 Y/ /end for stmt

22 }Y//end fillDeck function

3a

COP 3223: C Programming (Structures —Part 1) Page22 © Dr. Mark J. Llewellyn

| card shuftling example.c

31 void shuffle(Card * const wDeck)

32 £

33 int i:; A4 loop control

34 int j: Al fholds random valus between 0 - 51

35 Card temp; //defines temporary structurese for swvapplng Cards
36

37 A/ loop through wDeck randeomly swvappling Cards

38 for (i = 0; i < MAXCARDS: i++) {

39 4 = rand() % MAXCARDS:

48 temp = wDeck[i]:

41 wheck[1] = wDheck[j 1:

42 wDeck[1 1 = temp;

43 Y//end for stmt

44 } //=end shuffle function

45

46 void deal | const Card * const wDeck)

47 1

48 int i; //loop control

49 printf (""nThe shuffled deck\n"™):

LA printfi("---—-———————————— Ynhn");

o1 A/ loop through wDeck

52 for (i = 0; i < MAXCARDS: i++) {

53 printf({ "%¥5=3 of %-8=3%c", wDheck[i].face, wDeck[i].suit,
54 { L + 1) 3 2 "\t'" : '"\n'); //puts cards inteo thr=e= columns
LS Y/ /end for stmt

Y printcf ("\n\n");

57 } //=nd deal functicon

L8

COP 3223: C Programming (Structures —Part 1) Page 23 © Dr. Mark J. Llewellyn

E4|
65 int main()
bt |

bY? Card deck[MAXCARDS]: // define arrayv of Cards - an array of structures
b8

b9 S/ 1nitialize array of pointers to face value of card

78 const char *face[] = { "Ace", "Deuce", "Three", "Four", "Fiwve",

71 n3ix" "Seyen", "Eight", "Nine", "Ten",

72 "JTack", "Queen™, "Hing"}:

73 // initialize array of pointers to card suit

74 const char *suit[] = { "Heartsz=", "Diamonds", "Clubs", "Spadesz"};

75

76 srand(time(WULL)):; // randomize

' fillDeck|{ deck, face, suit); // loasd the deck with Cards

78 shuffle(deck); //put Cards in random order

77 deal(deck):; // dezal z11 §5Z Cards

28 Sfdo a8 second shuffle and deal to show the changes 1n the structures
81 S /comment out the next two lines for only one shuffle and deal

82 shuffle (deck):

83 deal (deck) ;

84 system("FRUSE") ;
85 retorn 0;

86 } //end main function

87

COP 3223: C Programming (Structures — Part 1) Page24 © Dr. Mark J. Llewellyn

e K:NCOP 3223 - Spring 2009VC0P 3223 Program Files\Structures In C

BEIES

The shuffled deck

L

%ix of Hearts King of Hearts Three of Clubs
euce of Clubs King of Diamonds Seven of Clubs
ight of Hearts Eight of Diamonds Queen of Diamonds
Queen of Hearts Mine of Hearts Seven of Spades
Ten of Spades Five of Diamonds Sdix of Spades
Four» of Hearts Jack of Spades GQueen of Spades
Four of Clubs Four of Diamonds Three of Hearts
Four of Spades Ten of Hearts Eight of Spades
King of Spades Ace of Clubs Mine of Spades
Ten of Diamonds Deuce of Spades Three of Spades
King of Clubs Jack of Diamonds Ace of Diamonds
Ten of Clubs Mine of Clubs Five of Spades
Three of Diamonds Deuce of Diamonds Five of Clubs
Ace of Hearts Five of Hearts Ace of Spades
Queen of Cluhbs Seven of Hearts Jack of Cluhbs
Mine of Diamonds Six of Clubs Jack of Hearts
Seven of Diamonds Deuce of Hearts $ix of Diamonds
Eight of Clubs
The zhuffled deck
Seven of Clubs Ace of Clubs Seven of Hearts
Eight of Diamonds Ten of Hearts Sdix of Clubs
Ace of Hearts Four» of Hearts Queen of Diamonds
Ten of Cluhbs King of Diamonds GQueen of Spades
King of Clubs Ace of Spades Ten of Diamonds
Jack of Diamonds Four of Diamonds King of Hearts
Ace of Diamonds Mine of Spades Five of Spades
Four of Spades Queen of Hearts Five of Clubs
euce of Spades Seven of Spades Five of Hearts
Ten of Spades Eight of Spades Eight of Clubs
euce of Diamonds Jack of Hearts Five of Diamonds
Mine of Hearts King of Spades Deuce of Hearts
Three of Diamonds Mine of Cluhbs Six of Hearts
Jack of Spades Deuce of Clubs Seven of Diamonds
Queen of Clubs Jack of Clubs 8ix of Diamonds
Three of Spades Eight of Hearts Three of Clubs
Six of Spades Four of Clubs Three of Hearts
Mine of Diamonds _J
(4
o ~
COP 3223: C Programming (Structures —Part 1) Page25 © Dr. Mark J. Llewellyn gj

Practice Problems

1. Write a C program that defines a structure for
food that maintains the name of the food, a
portion size of that food, and the number of
calories In the portion size. Read the values
Into an array of food items from a file of data,
then print the contents of the array of food
similar to how we did it in the first example on
page 12.

COP 3223: C Programming (Structures — Part 1) Page26 © Dr. Mark J. Llewellyn g’):

